Learning Dynamic Programming with Split-Merge Networks

نویسندگان

  • Alex Nowak
  • Joan Bruna
چکیده

We consider the learning of algorithmic tasks by mere observation of input-output pairs. Rather than studying this as a black-box discrete regression problem with no assumption whatsoever on the input-output mapping, we concentrate on tasks that are amenable to the principle of divide and conquer, and study what are its implications in terms of learning. This principle creates a powerful inductive bias that we leverage with neural architectures that are defined recursively and dynamically, by learning two scale-invariant atomic operations: how to split a given input into smaller sets, and how to merge two partially solved tasks into a larger partial solution. Our model can be trained in weakly supervised environments, namely by just observing input-output pairs, and in even weaker environments, using a non-differentiable reward signal. Moreover, thanks to the dynamic aspect of our architecture, we can incorporate the computational complexity as a regularization term that can be optimized by backpropagation. We demonstrate the flexibility and efficiency of the Divide-and-Conquer Network on three combinatorial and geometric tasks: sorting, clustering and convex hulls. Thanks to the dynamic programming nature of our model, we show significant improvements in terms of generalization error and computational complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divide and Conquer Networks

We consider the learning of algorithmic tasks by mere observation of input-output pairs. Rather than studying this as a black-box discrete regression problem with no assumption whatsoever on the input-output mapping, we concentrate on tasks that are amenable to the principle of divide and conquer, and study what are its implications in terms of learning. This principle creates a powerful induct...

متن کامل

A Dynamic Merge-or-Split Learning Algorithm on Gaussian Mixture for Automated Model Selection

Gaussian mixture modelling is a powerful tool for data analysis. However, the selection of number of Gaussians in the mixture, i.e., the mixture model or scale selection, remains a difficult problem. In this paper, we propose a new kind of dynamic merge-or-split learning (DMOSL) algorithm on Gaussian mixture such that the number of Gaussians can be determined automatically with a dynamic merge-...

متن کامل

Expected Duration of Dynamic Markov PERT Networks

Abstract : In this paper , we apply the stochastic dynamic programming to approximate the mean project completion time in dynamic Markov PERT networks. It is assumed that the activity durations are independent random variables with exponential distributions, but some social and economical problems influence the mean of activity durations. It is also assumed that the social problems evolve in ac...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

Creating Dynamic Sub-Route to Control Congestion Based on Learning Automata Technique in Mobile Ad Hoc Networks

Ad hoc mobile networks have dynamic topology with no central management. Because of the high mobility of nodes, the network topology may change constantly, so creating a routing with high reliability is one of the major challenges of these networks .In the proposed framework first, by finding directions to the destination and calculating the value of the rout the combination of this value with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016